Publications

Full publication list

Accepted: 

Revised and under review: 

Tang, J., S. Chen, D. Belda et al. Air and surface temperatures differently drive terrestrial carbon and water cycles in the high latitudes, 25 March 2024, PREPRINT (Version 1) at https://doi.org/10.21203/rs.3.rs-4091947/v1 In Review of communications earth & environment

Yun, H., … Tang J., et al., Plant physiological adaptation dominates aboveground versus belowground biomass distribution in permafrost region under climate warming, In Revision to PNAS.

Fu. Y.,.., Tang J., Penuelas J., Diminished contribution of spring phenology to early-season carbon uptake in a changing climate, In Review of Science Advances

2024 

Zhou, H., Tang, J.*, Olin, S., & Miller, P. A.* (2024). A comprehensive evaluation of hydrological processes in a second-generation dynamic vegetation model. Hydrological Processes, 38(4), e15152. https://doi.org/10.1002/hyp.15152. IF: 5.4

Chen, S., Fu, Y. H., Li, M., Jia, Z., Cui, Y., and Tang, J.: A new temperature-photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes, Geosci. Model Dev, https://doi.org/10.5194/gmd-17-2509-2024, 2024. IF: 7

Mo, Y.,  Chen, S.,  Wu, Z.,  Tang, J., &  Fu, Y. (2024).  The advancement in spring vegetation phenology in the Northern Hemisphere will reverse after 2060 under future moderate warming scenarios. Earth's Future, 12, e2023EF003788. https://doi.org/10.1029/2023EF003788  IF: 10.5

Pascual, D.,  Johansson, M.,  Pongracz, A., &  Tang, J. (2024).  Accounting for winter warming events in the ecosystem model LPJ-GUESS: Evaluation and outlook. Journal of Geophysical Research: Biogeosciences, 129, e2023JG007464. https://doi.org/10.1029/2023JG007464 IF: 3.7

2023

     (46) Tang, J., Zhou, P., Miller, P.A. et al. High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols. npj Clim Atmos Sci 6, 147 (2023). https://doi.org/10.1038/s41612-023-00463-7 

     (45) Yun, H., Zhu, Q., Tang, J., Zhang, W., Chen, D., Ciais, P., Wu, Q., & Elberling, B. (2023). Warming, permafrost thaw and increased nitrogen availability as drivers for plant composition and growth across the Tibetan Plateau. Soil Biology and Biochemistry, 182, 109041. https://doi.org/10.1016/j.soilbio.2023.109041. IF: 5.795

(44) Guan, Q., Tang, J., Feng, L., Olin, S., and Schurgers, G.: Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China, Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023. 2023. IF:4.295

(43) S. Lin,  Z. Hu,  Y. Wang,  X. Chen,  B. He,  Z. Song,  S. Sun,  C. Wu,  Y. Zheng,  X. Xia,  L. Liu,  J. Tang,  Q. Sun,  F. Joos,  W. Yuan (2023). Underestimated interannual variability of terrestrial vegetation production by terrestrial ecosystem models. Global Biogeochemical Cycles, 37, e2023GB007696. https://doi.org/10.1029/2023GB007696 IF: 5.96 

(42) Zhang, W., Schurgers, G., Peñuelas, J. R. Fensholt, H. Yang, J. Tang, X. Tong, P. Ciais & M. Brandt. Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nature Communications 14, 965 (2023). https://doi.org/10.1038/s41467-023-36727-2 IF: 17.69 

(41) S. Chen, Y. H. Fu, Z. Wu, F. Hao, Z. Hao, Y. Guo, X. Geng, X. Li, X. Zhang, J. Tang, V. P. Singh, X. Zhang, Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes, 2023, Journal of Hydrology, 616, 2023, https://doi.org/10.1016/j.jhydrol.2022.128817 IF: 6.708

(40) Fu, Y. H., Geng, X., Chen, S., Wu, H., Hao, F., Zhang, X., Wu, Z., Zhang, J., Tang, J., Vitasse, Y., Zohner, C. M., Janssens, I., Stenseth, N. C., & Peñuelas, J. (2023). Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees. Global Change Biology, 29, 1377– 1389. https://doi.org/10.1111/gcb.16545 IF: 13.21 

2022

(39) Guan, Q., Feng, L., Tang, J., Park, E., Ali, T. A., & Zheng, Y. (2022). Trends in river total suspended sediments driven by dams and soil erosion: A comparison between the Yangtze and Mekong rivers. Water Resources Research, 58, e2022WR031979. https://doi.org/10.1029/2022WR031979 IF: 5.24

(38) S. Chen, Y. H. Fu, F. Hao, X. Li, S. Zhou, C. Liu, J. Tang, Vegetation phenology and its ecohydrological implications from individual to global scales, Geography and Sustainability 2022 Vol. 3 Issue 4 Pages 334-338, https://doi.org/10.1016/j.geosus.2022.10.002 IF: 1.29

(37) X., Pi, Q. Luo, F. Lian, Y. Xu, J. Tang, X. Liang, E. Ma, R. Cheng, R. Fensholt, M. Brandt, X Cai, L. Gibson, J. Liu, C. Zheng, W. Li, B. A. Bryan, L. Feng. 2022. Mapping global lake dynamics reveals the emerging roles of small lake, Nature Communications, 13, 5777. https://doi.org/10.1038/s41467-022-33239-3 IF: 17.69

(36) Y., Fu, Li, X.; Chen, S.; Wu, Z.; Su, J.; Li, X.; Li, S.; Zhang, J.; Tang, J.; Xiao, J., 2022, Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests, Global Change Biology. IF: 13.21

(35) D. Belda, P. Anthoni, D. Wårlind, S. Olin, G. Schurgers, J. Tang, B. Smith, and A. Arneth. 2022. LPJ-GUESS/LSMv1.0: A next generation Land Surface Model with high ecological realism, https://doi.org/10.5194/gmd-15-6709-2022, Geoscientific Model Development, 2022. IF: 6.656

(34) Tang, J., Zhou, P., Miller, P., Schurgers, G., Gustafson, G., Makkonen R.,  Fu, Y., Rinnan, R., High latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols, 10.21203/rs.3.rs-1143422/v1. In revision to npj Climate and Atmospheric Science

(33) Wu Z., Lin C., Wang S., Gong Y., Zhao Y., Tang J., Boeck H., Vitasse Y., Fu Y., The sensitivity of ginkgo leaf unfolding to the temperature and photoperiod decreases with increasing elevation, Agricultural and Forest Meteorology, 2022. https://doi.org/10.1016/j.agrformet.2022.108840 IF: 4.651

(32) Geng X., Zhang Y., Fu Y., Hao F., Janssens I., Peñuelas J., Piao S., Tang. J., Wu. Z., Zhang J., Zhang X., Stenseth N., Contrasting phenology responses to climate warming across the northern extra-tropics, Fundamental Research, 2022, ISSN 2667-3258. https://doi.org/10.1016/j.fmre.2021.11.035.

(31) Hou X., L. Feng, Y. Dai, C. Hu, L. Gibsson, J. Tang, Z. Lee, Y. Wang, X. Cai,  J. Liu, Y. Zheng, C, Zheng (2022), Global mapping reveals increase in lacustrine algal blooms over the past decade, Nature Geoscience, (2022).  https://doi.org/10.1038/s41561-021-00887-x, IF: 21.53

(30) Fu, Y., Chen, S., Geng, X., Wu, Z., Hao, Z., Tang, J., Zhang, X., Xu, Z. and Hao, F., Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient. Frontiers in Plant Science, p.2980. https://doi.org/10.3389/fpls.2021.802664. IF: 4.407

     (29) Yun, H., Tang, J., D’Imperio, L., Wang, X., Qu, Y., Liu, L., et al. (2022). Warming and increased respiration have transformed an alpine steppe ecosystem on the Tibetan Plateau from a carbon dioxide sink into a source. Journal of Geophysical Research: Biogeosciences, 127, e2021JG006406. https://doi.org/10.1029/2021JG006406. IF: 3.822

2021

(28) Wu, Z., Chen, S., De Boeck, H. J., Stenseth, N. C., Tang, J., Vitasse, Y., Wang, S., Zohner, C., & Fu, Y. H. (2021). Atmospheric brightening counteracts warming-induced delays in autumn phenology of temperate trees in Europe. Global Ecology and Biogeography, 30, 2477– 2487.  https://doi.org/10.1111/geb.13404 IF: 7.148

(27) Wang, X., Feng, L., Gibson, L., Qi, W., Liu, J., Zheng, Y., Tang, J., Zeng, Z., & Zheng, C. (2021). High-Resolution Mapping of Ice Cover Changes in Over 33,000 Lakes Across the North Temperate Zone. Geophysical Research Letters, 48, e2021GL095614. https://doi.org/10.1029/2021GL095614. IF: 4.72

(26) Li X., Y. Fu, S. Chen, J. Xiao, G. Yin, X. Li, X. Zhang, X. Geng, Z. Wu, X. Zhou, J. Tang, F. Hao, (2021). Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China. Agricultural and Forest Meteorology, 304-305, 108427. https://doi.org/10.1016/j.agrformet.2021.108427. IF: 4.651

(25) Wang J., Y. Tong, L. Feng, D. Zhao, C. Zheng, J. Tang, (2021). Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise. JGR-Oceans. 10.1029/2020JC016842. IF: 3.56

(24) Yang X., L. Feng, X. Hou, J. Wang, J. Tang, (2021). Four-decade dynamics of the water color in 61 large lakes on the Yangtze Plain and the impacts of reclaimed aquaculture zones. Science of The Total Environment, in press. IF: 6.551

(23) Simin, T., J. Tang, T. Holst, and R. Rinnan, (2021). Volatile Organic Compound Emission in Tundra Shrubs – Dependence on Species Characteristics and the near-Surface Environment. Environmental and Experimental Botany, 184 (2021/04/01/ 2021): 104387. https://doi.org/10.1016/j.envexpbot.2021.104387. IF: 4.027

2020

(22) Rinnan R., L. L. Iversen, J. Tang, I. Vedel-Petersen, M. Schollert, G. Schurgers, (2020). Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic, Proceedings of the National Academy of Sciences Dec 2020, 117 (51) 32476-32483; DOI: 10.1073/pnas.2008901117. IF: 11.2

(21) Pi X., L. Feng, W. Li, J. Liu, X. Kuang, K. Shi, W. Qi, D. Chen & J. Tang, (2021). Chlorophyll-a concentrations in 82 large alpine lakes on the Tibetan Plateau during 2003–2017: temporal–spatial variations and influencing factors, International Journal of Digital Earth, DOI: 10.1080/17538947.2021.1872722. IF: 3.097

(20) Pascual, D., J. Åkerman, M. Becher, T. V. Callaghan, T.R. Christensen, E. Dorrepaal, U. Emanuelsson, R. Giesler, D. Hammarlund, E. Hanna, A. Hofgaard, H. Jin, C. Johansson, C. Jonasson, J. Klaminder, J. Karlsson, E. Lundin, A. Michelsen, D. Olefeldt, A. Persson, G.K. Phoenix, Z. Rączkowska, R. Rinnan, L. Ström, J. Tang, R.K. Varner, P.A. Wookey & M. Johansson, (2020). The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study. Ambio https://doi.org/10.1007/s13280-020-01381-1. IF: 3.616

(19) Hou, X., L. Feng, J. Tang, X.-P. Song, J. Liu, Y. Zhang, J. Wang, Y. Xu, Y. Dai, Y. Zheng, C. Zheng, and B. A. Bryan. (2020). Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment 248:111998. https://doi.org/10.1016/j.rse.2020.111998 IF: 13.63

(18) Tong, Y., Feng, L., Sun, K., Tang, J (2020). Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements. Remote Sens. 2020, 12, 2330. https://doi.org/10.3390/rs12142330 IF: 4.118

(17) Guan, Q, Feng, L, Hou, X, Schurgers, G, Zheng, Y and Tang, J (2020). Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sensing of Environment, vol. 246, 111890. https://doi.org/10.1016/j.rse.2020.111890. IF: 13.63

(16) Chen, J., J. Tang, and X. Yu. (2020). Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Environmental Pollution 259:113955.  https://doi.org/10.1016/j.envpol.2020.113955 IF: 6.792

2019

(15) Tang, J., Schurgers, G., & Rinnan, R. (2019). Process understanding of soil BVOC fluxes in natural ecosystems: A review. Reviews of Geophysics. 57, 966– 986. https://doi.org/10.1029/2018RG000634 IF: 22.0

2018

(14) Metcalfe, D. B., T. D. G. Hermans, J. Ahlstrand, M. Becker, M. Berggren, R. G. Björk, M. P. Björkman, D. Blok, N. Chaudhary, C. Chisholm, A. T. Classen, N. J. Hasselquist, M. Jonsson, J. A. Kristensen, B. B. Kumordzi, H. Lee, J. R. Mayor, J. Prevéy, K. Pantazatou, J. Rousk, R. A. Sponseller, M. K. Sundqvist, J. Tang, J. Uddling, G. Wallin, W. Zhang, A. Ahlström, D. E. Tenenbaum, and A. M. Abdi (2018), Patchy field sampling biases understanding of climate change impacts across the Arctic, Nature Ecology & Evolution, 2(9), 1443-1448, https://doi.org/10.1038/s41559-018-0612-5 IF:15.6

(13) Tang, J., H. Valolahti, M. Kivimäenpää, A. Michelsen, and R. Rinnan (2018), Acclimation of Biogenic Volatile Organic Compound Emission From Subarctic Heath Under Long-Term Moderate Warming, Journal of Geophysical Research: Biogeosciences, 123(1), 95-105. https://doi.org/10.1002/2017JG004139 IF: 3.41        

(12) Nakhavali, M., P. Friedlingstein, R. Lauerwald, J. Tang, S. Chadburn, M. Camino-Serrano, B. Guenet, A. Harper, D. Walmsley, M. Peichl, and B. Gielen (2018), Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM), Geosci. Model Dev., 11(2), 593-609, https://doi.org/10.5194/gmd-11-593-2018. IF: 5.240

(11) Yan, Y., J. Tang, and P. Pilesjö (2018), A combined algorithm for automated drainage network extraction from digital elevation models, Hydrological Processes, 32(10), 1322-1333. https://doi.org/10.1002/hyp.11479 IF: 3.256

(10) Tang, J., A. Y. Yurova, G. Schurgers, P. A. Miller, S. Olin, B. Smith, M. B. Siewert, D. Olefeldt, P. Pilesjö, and A. Poska (2018), Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow, Science of The Total Environment, 622-623, 260-274.  https://doi.org/10.1016/j.scitotenv.2017.11.252. IF: 6.551

2017

(9) Tiiva, P.*, Tang, J.*, Michelsen, A., and Rinnan, R. (2017): Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem, Science of The Total Environment, 580, 1056-1067. https://doi.org/10.1016/j.scitotenv.2016.12.060.IF: 6.551 *These authors contributed equally to this work.

2016

(8) Tang, J., Schurgers, G., Valolahti, H., Faubert, P., Tiiva, P., Michelsen, A., and Rinnan, R. (2016): Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath, Biogeosciences, 13, 6651-6667. https://doi.org/10.5194/bg-13-6651-2016 IF: 3.7

(7) Ning, W.*, Tang, J.*, and Filipsson, H. L. (2016): Long-term coastal openness variation and its impact on sediment grain-size distribution: a case study from the Baltic Sea, Earth Surf. Dynam., 4, 773-780. https://doi.org/10.5194/esurf-4-773-2016 IF: 3.176 *These authors contributed equally to this work.

2012-2015

(6) Tang J., Miller PA., Persson A., Olefeldt D., Pilesjö P., Heliasz M., Jackowicz-Korczynski M., Yang Z., Smith B., Callaghan TV., and Christensen TR. (2015): Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution, Biogeosciences, 12, 12, 2791-2808. https://doi.org/10.5194/bg-12-2791-2015 IF: 3.7

(5) Gevaert C., Suomalainen J., Tang J. & Kooistra, L., (2015), Generation of Spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 8, 3140-3146. https://doi.org/10.1109/JSTARS.2015.2406339 IF: 3.784

     (4) Tang J., Miller PA., Crill PM., Olin S. & Pilesjö P., (2014), Investigating the influence of two different flow routing algorithms on soil–water–vegetation interactions using the dynamic ecosystem model LPJ-GUESS. Ecohydrology. https://doi.org/10.1002/eco.1526 . IF: 2.843

(3) Tang J., Pilesjö P., Miller PA., Persson A., Yang Z., Hanna E. & Callaghan TV., (2014), Incorporating topographic indices into dynamic ecosystem modeling using LPJ-GUESS. Ecohydrology, 7, 1147-1162. https://doi.org/10.1002/eco.1446 IF: 2.843

(2) Tang J., Pilesjö P., Persson A., (2013), Estimating slope from raster data – a test of eight algorithms at different resolutions in flat and steep terrain. Geodesy and Cartography, 39(2): 41-52. http://dx.doi.org/10.3846/20296991.2013.806702 IF: 0.8

(1) Persson A., Hasan A., Tang J., Pilesjö P., (2012), Modelling flow routing in permafrost landscapes with TWI: An evaluation against Site-Specific Wetness measurements. Transactions in GIS, 16(5): 701-713. http://dx.doi.org/10.1111/j.1467-9671.2012.01338.x IF: 2.406